2 00 6 Solution of Generalized Fractional Reaction - Diffusion Equations
نویسنده
چکیده
This paper deals with the investigation of a closed form solution of a generalized fractional reaction-diffusion equation. The solution of the proposed problem is developed in a compact form in terms of the H-function by the application of direct and inverse Laplace and Fourier transforms. Fractional order moments and the asymptotic expansion of the solution are also obtained.
منابع مشابه
J an 2 00 7 SOLUTION OF GENERALIZED FRACTIONAL REACTION - DIFFUSION EQUATIONS
This paper deals with the investigation of a closed form solution of a generalized fractional reaction-diffusion equation. The solution of the proposed problem is developed in a compact form in terms of the H-function by the application of direct and inverse Laplace and Fourier transforms. Fractional order moments and the asymptotic expansion of the solution are also obtained.
متن کامل2 00 6 Fractional Reaction - Diffusion Equations
In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of ge...
متن کامل2 00 6 Reaction - Diffusion Systems Andnonlinearwaves
The authors investigate the solution of a nonlinear reaction-diffusion equation connected with nonlinear waves. The equation discussed is more general than the one discussed recently by Manne, Hurd, and Kenkre (2000). The results are presented in a compact and elegant form in terms of Mittag-Leffler functions and generalized Mittag-Leffler functions, which are suitable for numerical computation...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کاملA Generalized Thermo-Elastic Diffusion Problem in a Functionally Graded Rotating Media Using Fractional Order Theory
A generalized thermo-elastic diffusion problem in a functionally graded isotropic, unbounded, rotating elastic medium due to a periodically varying heat source in the context of fractional order theory is considered in our present work. The governing equations of the theory for a functionally graded material with GNIII model are established. Analytical solution of the problem is derived in Lapl...
متن کامل